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1 Three Laws of DNSSEC

First Law An Enforcer may not injure a zone by revoking its DS record.

Second Law An Enforcer must keep a secure KSK or an insecure KSK if that
does not conflict with he first rule.

Third Law An Enforcer must protect its ZSK security unless revoking does
not conflict with the first or second rule.

Zeroth Law An enforcer may not harm a zone, or, by inaction, allow zones to
come to harm.

“ Trevize frowned. “How do you decide what is injurious, or not
injurious, to humanity as a whole?”

“Precisely, sir,” said Daneel. “In theory, the Zeroth Law was
the answer to our problems. In practice, we could never decide.
A human being is a concrete object. Injury to a person can be
estimated and judged. Humanity is an abstraction.”

”–Foundation and Earth

2 Warning

This document is a rough explanation of an idea. It is based on earlier work and
may use but not introduce terminology of an other document. Possibly intro-
duce completely new notations, skip reasoning steps without warning (well, you
are warned now) and be plain wrong. This document is considered unsuitable
for young children and Liberal-Arts majors. Read at OWN RISK.
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3 Introduction

A key roll-over is a process that runs over time, at any time each key has a state.
Matthijs Mekking introduced the idea[1] that a key has a private part, a public
part, and a parent part. Each of these parts have their own state-machine an
together represent a ’key-state’.

This idea forms the basis for this document and allows us to generalize much
of the logic. All parts of the key-state now represent records which are actually
published to the world. The state of a record tells if and how well the record is
known to caching resolvers1. As a result each record now has exactly the same
state machine. Furthermore instead of 3 parts we use 4 parts per key.

With these ingredients we can formalize the boundries of DNSSEC. We say
a zone is in a valid DNSSEC state if a validator can build a chain of trust from
that state. Alternatively, a unsigned zone is also considered valid, as long as
it is not bogus2. In terms of end-user, if the user is able to get an address for
a name, the zone is valid. With our formal definition we can test the current
state for validity and have a precise way of deciding we can take a transition to
a next key state.

1This document mixes the terms cache, resolver and validator. In all cases a DNSSEC
validating caching resolver is meant.

2Bogus: The validating resolver has a trust anchor and a secure delegation indicating that
subsidiary data is signed, but the response fails to validate for some reason: missing signatures,
expired signatures, signatures with unsupported algorithms, data missing that the relevant
NSEC RR says should be present, and so forth. (RFC4033)
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4 Cache Centered Approach

In a cache centered approach we do not define how rollovers should work exactly.
The state of a key is represents how well it is know to any caching validator.
Either all caches have a record, no caches have a record, or some caches might
have it en some caches might not. In the latter case we must simply wait long
enough and the record will enter one of the certain states again. We will discuss
the key states in section 5.2.

Each key has a goal, the goal is either to be published and to be known to
all caches around the world or to none at all. A system can make any state
transition as long as it makes sure that the validity of a zone in general is not
compromised. This does also imply that a key’s goal can be changed at any
time without the zone going bogus. E.g. if a key has a desire to disappear but
is the only key left it will stay on duty for as long as necessary. Also, new keys
can be introduced at any time.

This approach has a number of advantages. Here, in contrast to a roll-over
centered approach, keys have no direct relation to each other. The system does
not try to roll from one specific key to another specific key but rather satisfy all
goals while remaining valid as a whole. Essentially the roll-over is a side effect
of the strive to satisfy key goals. New keys can be introduced and goals can be
redefined at any time without a problem. This makes the system agile, robust,
and capable of handling unexpected situations. Another advantage is that our
system will ‘think’ the same was as the validators we are trying to satisfy. It
always knows how resolvers (might) see the data and makes keeping that data
valid its core business.

5 Keys

5.1 Keyring

Although zones can share key material the records are published independently.
As a result each zone must have its own collection of key states. Let us refer to
this collection as a keyring denoted by K. A Keyring and a Zone have a 1-on-1
relation.

Keys not known to any resolver can freely be added to or removed from the
keyring. Similar, if a key is in none of the keyrings the key material can be
purged safely from the keystorage.

5.2 Key States

The state of a key is publicly represented by the DS record, DNSKEY record,
RRSIG DNSKEY record and the RRSIGs over all the data in the zone. The lat-
ter consists of multiple records but all share the same state, although technically
incorrect we will refer to it as the RRSIG record.

Because each of the four records can be introduced at a different time and
at a different pace, all need their own state machine (Figure 1).

Reputation The state of a resource record is defined by its reputation in
world’s caches. There are 2 certain states, Hidden and Omnipresent. In the
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Figure 1: State diagram for individual records.

first state a resource record is not available in any cache (any longer or at
start). Similarly in the latter state we are sure all caches have a copy of the
record or can at least obtain it (i.e. they have no old resource record set with
expired TTL).

The two other states represent uncertainty: Rumoured and Unretentive.
Both mean that some caches do and some don’t know about the resource record.
In the former state a record is being actively published and will somewhere in
the future be known by all caches. While the latter state the record is not
published (any longer) and will disappear from collective memory over time.

Since DNS involves caches and TTLs, it is entirely possible for a record
being in the Rumoured state while in fact every cache in the world holds the
record. The problem is the uncertainty, we have no way to know a record is
fully propagated other than waiting the worst case propagation time. This is
also true for the Unretentive state.

Summary A record is always in one of these four states:

Hidden: The record is in no cache at all.

Rumoured : The record is published but not every cache might be aware.

Omnipresent : Every cache has this record.

Unretentive: The record is withdrawn but some caches might still have it.

Formal definition of record states Let r be a record, Announced the
collection of records that are actively published, and C the collection of all
caches in the world. The states are defined by:
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r ∈ Hidden ≡ ∀c ∈ C · r 6∈ c
r ∈ Rumoured ≡ ∃c ∈ C · r 6∈ c ∧ ∃c ∈ C · r ∈ c ∧ r ∈ Announced
r ∈ Omnipresent ≡ ∀c ∈ C · r ∈ c
r ∈ Unretentive ≡ ∃c ∈ C · r 6∈ c ∧ ∃c ∈ C · r ∈ c ∧ r /∈ Announced

Ordering We also define a ordering on record states so we can compare states.
hidden < rumoured < omnipresent < unretentive. This represents the normal
lifecycle for a record as depicted in Figure 1.

5.3 Goal

Each key in the keyring has a goal. The goal is an internal drive for the individual
records to reach a certain state. The goal is either ‘well-known’ or ‘not-known’.
While the goal is ‘well-known’ (the key is said to be introducing) the record
tries to go to the Omnipresent state. In the other case its direction of movement
is towards the hidden state and is said to be outroducing. When a record
has fulfilled its goal the record is said to be stable. The record can become
unstable again only if the goal changes (or the state changes somehow by user
intervention, but this is potentially harmful).

5.4 Role

A key has one or two roles. It is a ‘key Signing key’ (KSK), a ‘zone signing key’
(ZSK), or both — combined signing key (CSK). This document does not spend
too much time on these roles as our model is not concerned with the difference.
It simply checks whether or not there is a key with certain properties. For
example, a KSK has no RRSIG record. Every statement about its RRSIG
record evaluates to False. A ZSK has no DS and RRSIG DNSKEY record. A
CSK has all records.

6 Model

6.1 Notation

For readability let D denote a DS record, K the DNSKEY, k the RRSIG
DNSKEY, and S the RRSIG. The state of a record is indicated with super-
script and can be found in Table 1. These states correspondent directly with
the states from Figure 1. I.e. hidden ≡ −, rumoured ≡↑, omnipresent ≡ +,
unretentive ≡↓. The subscript of a record denotes the key it belongs to. The
current evaluated key has subscript i. E.g: the statement “the DS of key z is in
the Omnipresent state” can be written as D+

z .

P
≤ 1 1

direction
in ↑ +

out ↓ -

Table 1: Notation of states in superscript
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6.2 Rules

The system uses three rules, Equation (1)(2)(3). To see if we can transition a
record to the next state we first test the three rules. They should all be True,
if not we apparently have an invalid zone on our hands. This isn’t our fault
(presumably3) but we have to deal with it.

Next we evaluate the rules again but pretend we gave the record the re-
quested state. At least the rules with a positive outcome in the first test must
still be positive if we were to apply this state transition. Otherwise we may not
make the transition as it would make the zone less valid.

Allowing rules to be negative in the first test while prohibit positive rules
become negative prevents locks in our statemachine and will to some extend
repair invalid situations in a graceful manner. Also, it allows unsigned zones to
exist without special tricks.

The three rules should be true for each record of all keys. The rules will be
explained in a later section.

rule1(i) : ∃x ·D↑x ∨D+
x (1)

rule2(i) : ∀x · (D−x ∨ ∃y ·K+
y k+y (Dx = Dy))

∨ ∃x ·D+
x K

+
x k+x

∨ ∃x, y ·D↑xK+
x k+x D

↓
yK

+
y k+y (2)

∨ ∃x, y ·D+
x K

↑
xk
↑
xD

+
y K

↓
y

; alg(i) = alg(x) = alg(y)

rule3(i) : ∀x · (K−x ∨ ∃y · S+
y (Kx = Ky))

∨ ∃x ·K+
x S+

x

∨ ∃x, y ·K↑xS+
x K↓yS

+
y (3)

∨ ∃x, y ·K+
x S↑xK

+
y S↓y

; alg(i) = alg(x) = alg(y)

6.3 Algorithm

The defined rules are just for deciding if a single record may change its state to
the next. Algorithm 1 describes how this can be done for a whole zone while
also take timing into account.

Three functions might need more explanation:

desiredState(state, goal) returns the state a record wants to change to given
its movement direction and current state.

transitionAllowed(keyring, key, record, state) Evaluates the rules and checks
if record can be brought to state with respect to the DNSSEC validity.

3The system should never bring the zone to an invalid state, if it does it is considered a
serious bug!
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Algorithm 1 Advance keys within a zone, return time for next run.

nextRun←∞
repeat
change← ⊥
for all key ∈ keyring do

for all record ∈ key do
nextState← desiredState(state(record), goal(key))
if nextState = state(record) then
{This record is in a stable state}
continue

end if
if not transitionAllowed(keyring, key, record, nextState) then
{This transition would make the zone invalid}
continue

end if
t← transitionT ime(type(record), state(record), nextState, lastChange(record))
if t ≥ now() then
{We are not allowed to make the transition at this time}
nextRun← minimum(t, nextRun)
continue

end if
state(record)← nextState
lastChange(record)← now()
change← >

end for
end for

until not change
return nextRun
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transitionTime(type, state, state, time) The absolute time after which the
transition between the two states can take place given the type of record
and the time of last change. This is policy specific.

7 Rules explained

In a nutshell, the first rule makes sure the zone is kept signed at all times, the
second keeps the KSK in a valid state and the third the ZSK. The three rules
do influence each other. For example rule 3 does allow having no ZSK, but only
if there is no KSK. Rule 2 does allow having no KSK but only if there is no
DS published. Rule 1 seems simple but it is the only thing that keeps the zone
from going unsigned.

Disabling rule 1 will allow both other rules to go to unsigned (in a gracefull
manner).

rule1(i) : ∃x ·D↑x ∨D+
x (4)

At all times there must be a DS published (4). The only exception is when
the user wants his zone unsigned, this must be explicitly stated. If so, this rule
must skipped. Skipping in other situations is possible, but ill advised. The
enforcer may do a rollover via an unsigned zone.

In words: there must always exist a DS record introducing or omnipresent.
It does not matter what algorithm or which key this DS belongs to. This seems
incomplete but really forms a fundament for rule number 2.

rule2(i) : ∀x · (D−x ∨ ∃y ·K+
y k+y (Dx = Dy)) (5a)

∨ ∃x ·D+
x K

+
x k+x (5b)

∨ ∃x, y ·D↑xK+
x k+x D

↓
yK

+
y k+y (5c)

∨ ∃x, y ·D+
x K

↑
xk
↑
xD

+
y K

↓
y (5d)

; alg(i) = alg(x) = alg(y) (5e)

Rule 2 describes the dependency of the DS record on the DNSKEY and its
RRSIG. The subequations represent the different scenarios that are valid, at
least one of these scenarios must be true at all times. The only keys that need
to be considered are the keys with the same algorithm as the input key i (5e).

Subequation (5b) is the trivial case: If there is a key with the DS, DNSKEY
and RRSIG DNSKEY fully propagated all other keys of this algorithm can be
in any state. No further requirements.

Similar subequation (5c) requires two keys swapping DS records. Again, if
this is the case, the zone is valid for the KSK and other keys can be in any state
without consequences.

Subequation (5d) also requires two keys, but now they are swapping DNSKEYs.
Notice the outroduction of the signature is omitted in this subequation (k↓y), this
is not an error. Including it would block the DNSKEY ky.

Finally the unsigned case, subequation (5a). It applies to zones unsigned
for this algorithm, which includes unsigned for any algorithm. In the un-
signed/partially signed case no DS may be published. If however a DS of key x
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is published anyway there must be a key y with the DNSKEY set propagated
and the DS in the same state as key x. Like everywhere else x and y may be
the same key.

Let us review an example (ignoring rule 1 and 2). Say we have two keys:
D+

x K
+
x k+x and D+

y K
−
y k−y . We want the zone to become unsigned. At time 0

the zone is valid because of (5b) and we can therefore outroduce the DS of y.
Now, because of (5a) me may do the same with the DS of x at the same time.
When both are hidden the last mentioned rule allows the remaining DNSKEY
and RRSIG DNSKEY to do whatever they want.

rule3(i) : ∀x · (K−x ∨ ∃y · S+
y (Kx = Ky)) (6a)

∨ ∃x ·K+
x S+

x (6b)

∨ ∃x, y ·K↑xS+
x K↓yS

+
y (6c)

∨ ∃x, y ·K+
x S↑xK

+
y S↓y (6d)

; alg(i) = alg(x) = alg(y) (6e)

The third rule works exactly the same as rule 2 but reasons about the ZSK
part.

8 Examples

Names for rollovers are taken from “DNSSEC Key Timing Considerations Follow-
Up”. The tables in the following sections contain different kind of roll overs.
Each row in the table represents a time step and the first row is the start situ-
ation. When a key does not change during a time step the record cells are left
blank.

8.1 ZSK Double Signature

Without any policy directives a double signature rollover will be executed as
this is the fastest way.

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
A+ B+ C+ B+ D+ B− D−

B↑ D↑ 0
B↓ D↓ B+ D+ MaxTTL(key, sig)
B− D− MinTTL(key, sig)

Total time TTL(sig) + TTL(key)1

1 The total time does not seem obvious from this table. The ‘fast’
record set will have to wait while the ‘slow’ record set is swapping
keys.

Table 2: ZSK Double Signature rollover

Let us walk trough the example in Table 2. We’ll evaluate each record from
left to right. The KSK is ignored in our description as there are no changes
during the rollover.
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Since ZSK1 has is outroducing its records try to move to the unretentive
state (↓). This may not happen yet. For example the desired state for the
DNSKEY (B) of ZSK1 is unretentive. Currently using ZSK1 as key i all four
rules are true. If we would now use the new state rule2 would become false.
the A↑xB

+
x C+

x part would no longer be true. Therefore we may not take this
transition at this moment and we may stop look at the other rules, although
rule3 would also become false.

For both the DNSKEY as the RRSIG of ZSK2 all rules are true prior to
a transition. After a transition they would still be true, so we can take these
records safely to the nest state.

In the second time step (row 3) we can still not progress ZKS1 initially.
But, given enough time passed we may bring ZSK2’s records to the next state.
Suppose both the DNSKEY and RRSIG of ZSK2 change at the same time. In
this very same time step we are now suddenly allowed to outroduce the records
of ZSK1. Because we keep looping over all records of all keys till no record
changes anymore the order of evaluation does not matter for the effectivity of
the algorithm (it might affect the efficiency however).

The last time step has no actions for ZSK2 as all its records are in a stable
state. The records in ZSK1 can go to hidden (−). Their state has no effect on
any of the rules as ZSK2 causes all rules to be true anyway.

8.2 Other examples

Further examples are not explained in detail and are here for reference.

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
A+ B+ C+ B+ D+ B− D−

B↑ D− 0
B+ D↓ B+ D↑ TTL(key)
B↓ D− B+ D+ TTL(sig)
B− D− TTL(key)

Total time 2× TTL(key) + TTL(sig)

Table 3: ZSK Pre-Pubplucation rollover

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
A+ B+ C+ B+ D+ B− D−

B− D↑ 0
B↓ D+ B↑ D+ TTL(sig)
B− D↓ B+ D+ TTL(key)
B− D− TTL(sig)

Total time 2× TTL(sig) + TTL(key)

Table 4: ZSK Double RRSIG rollover
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KSK1 (out) ZSK1 (out) CSK1 (in) Time
A+ B+ C+ B+ D+ A− B− C− D−

A− B− C− D↑ 0
A− B↑ C↑ D+ TTL(sig)

A↓ B+ C+ A↑ B+ C+ D+ TTL(key)
A− B↓ C↓ B↓ D+ A+ B+ C+ D+ TTL(ds)
A− B− C− B− D↓ TTL(key)

B− D− TTL(sig)
Total time 2× TTL(key) + 2× TTL(sig) + TTL(ds)

Table 5: Split Key to Single Key Algorithm rollover
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