Object Relational Mapper

OPENDNSSEC ENFORCER

René Post, rene@xpt.nl
January 11, 2011

Contents

1

2

Overview
Key and Signing Policy Entity-Relationship Diagram

Object Relationship Mapping
3.1 Data Access Layer
3.2 Object Relational Mapper

Performance

1 Overview

The enforcer uses several entities and relationships between them to reason
about the state of the DNSSEC keys in the zones it manages.

Multiple databases need to be supported by the enforcer e.g. MySQL,SQLite
and Postgress. To get a feeling for what that entails, 2 days were used to
investigate the different available ORM solutions. The resulting ORM that was
selected for the proof of concept is the BSD licensed litesql object relationship
manager.

2 Key and Signing Policy Entity-Relationship
Diagram

The key and signing policy ER diagram contains only the operational data
needed by the enforcer for its day to day operation. The flattened XML policies
that were previously stored in tables in the enforcer database have been collapsed
into a single blob value in the policy entity.

. d | sm * .
SecurityModule n Py KeyPair
* * fkeys
1 fpolicy
Policy o e e DNSSECKey
1 fpolicy
* 1 | zone
Zone

Figure 1: KASP ER Diagram
Policy Entity that represents the policies known to the enforcer. The actual
policy parameters are stored as a blob value in the policy record.

SecurityModule Entity that represents the security modules (HSMs) known
to the enforcer.

KeyPair Entity that represents the keypairs present in the security modules.

Security module keys Relationship that relates a keypair to the security
module that contains it.

Keypair conforms to policy Relationship that relates a keypair to the pol-
icy that dictates its lifecycle.

Zone Entity that represents the zones handled by the enforcer

Zone conforms to policy Relationship that relates a zone to the policy that
dictates its lifecycle.

DNSSECKey Relationship that stores information about which keypairs are
used by which zones. This contains information about the state of the key and
the times that changes to the state occurred/will occur.

3 Object Relationship Mapping

The object relationship mapping has been generated with the (BSD licensed)
liteSQL package. Because the generated wrappers depend on a run-time support
library, we need to decide whether we want to allow our code to depend on this
library or if we want to replace it with something we write ourselves.

kaspdb.xml

kasp.db.
mysq|l

kaspdb
(C++)
sqlite
Database Access Layer Object Relational Mapper

Figure 2: XML to Protocol Buffer

The colours in the diagram have the following meaning.

blue: This is not a current dependency of OpenDNSSEC. The module is needed
in order to generate code from a specification for the enforcer.

red: This is not a current dependency of OpenDNSSEC. The module is needed
in order to build the enforcer.

3.1 Data Access Layer
kasp.db.mysql MySQL database.

kasp.db.pg Postgress database.
kasp.db.sqlite SQLite database.

MySQL MySQL access layer contains code specific to MySQL that is needed
by the ORM to work correctly.

Postgress Postgress access layer contains code specific to Postgress that is
needed by the ORM to work correctly.

SQLite SQLite access layer contains code specific to SQLite that is needed
by the ORM to work correctly.

3.2 Object Relational Mapper
kaspdb.xml XML file describing the entities and relations.

litesql-gen Generator from the liteSQL package used to generate the database
tables.

kaspdb (C++4) The C++ classes representing the entities and relations stored
in the database. Allows the creation of tables, records and relations by work-
ing with C++ classes. The use of SQL is pushed down to lower levels, but
queries can be executed using C++ expressions that translate into SQL database
queries.

Object Relational Mapper The C++ run-time library used by the gener-
ated wrapper code to access the database.

4 Performance

Using the generated wrappers a testcase was created that writes 50000 records
to the zonelist. When every zone is inserted in its own transaction this takes 80
seconds. When the zones are all written in a single transaction this takes less
than 5 seconds on a 2.4GHz MacBook Core 2 Duo using an Intel 160GB SSD
drive.

