C++ Wrapper for XML Configuration

OPENDNSSEC ENFORCER

René Post, rene@xpt.nl
January 11, 2011

Contents
1 Overview

2 Reading XML
2.1 libxml2
2.2 kaspxml
2.3 confxml

3 Mapping XML to C++4 Classes
3.1 kaspxml2pb
3.2 lvaand xml2pblua o
3.3 xml2pb . ..o
3.4 duration

4 Configuration Classes
4.1 Kkasp.proto
4.2 protoc
4.3 kasppb (CH4) . . . o oo
4.4 protobuf
4.5 Serialized Protobuf o000

5 Implementation Notes

1 Overview

The enforcer needs a way to read existing kasp.xml and conf.xml configurations
and act on them. The preferred way to do this is to create wrapper classes to
provide type save access to that information.

A total of 2 days were used to create a proof of concept for this using Google’s
protocol buffers.

kasp.xml : xml2pb

kasp.xml2pb kasp.proto

protoc

{ l

kasp

serialized

B

. kasp.pb
libxmI2 s }protobuf (Ct4) : protobuf

xml2pb
conf.xml :
I duration I
Reading XML Mapping XML to Configuration Classes

Configuration Classes

Figure 1: XML to Protocol Buffer

The colours in the diagram have the follwing meaning.

green:

blue:

red:

2

This is an existing dependency of OpenDNSSEC.

This is not a current dependency of OpenDNSSEC. The module is needed
in order to generate code from a specification for the enforcer.

This is not a current dependency of OpenDNSSEC. The module is needed
in order to build the enforcer.

Reading XML

XML can be processed in two ways. The first way is by reading in a complete
XML document and then process the document object model (DOM). The
second way is to process the XML document while it is being read and just
act on whatever elements and text are being served up by the parser (SAX2).

[\

Because it is faster and uses less memory we use SAX2 for xml processing.
Configurations don’t profit that much from this because the files are not that
big to begin with, but for processing a huge zonelist xml file this can be a big
time and space saver.

2.1 libxml2

libxml2 is an existing dependency of OpenDNSSEC. For reading in the xml
configurations, the streaming SAX2 API is used.

2.2 kasp.xml
The kasp.xml file as it is currently being used in OpenDNSSEC.

2.3 conf.xml

The conf.xml file as it is currently being used in OpenDNSSEC.

3 Mapping XML to C++ Classes

The configuration data wrapper classes are easier to use if they do not have the
same deeply nested structure as the XML configuration data. To allow for this,
a mapping layer has been created that can read XML element values into the
C++ wrapper classes using reflection.

The mapping layer can be kept very small (a few hunderd LOCs) because it
uses reflection to reason about the configuration wrapper C++ classes to which
the XML data needs to be stored.

3.1 kasp.xml2pb

This contains a simple mapping from xml elements to configuration wrapper
items. It is meant to be human readable and maintainable.

3.2 lua and xml2pb.lua

Lua is scripting language that is only required to generate code. xml2pb.lua is
a tiny script that generates the kasp.xml2pb C+4 mapping code.

3.3 xml2pb
This C++ code will use reflection to read XML elements it gets via SAX2 to
the correct values in the protocol buffer.

3.4 duration

The duration code from the OpenDNSSEC signer utils. Used to map date time
values in XML to a numerical value in seconds.

4

The

Configuration Classes

configuration wrapper classes have been generated with (BSD licensed)

Google protocol buffers. Because the generated wrappers depend on a run-time
support library, we need to decide whether we want to allow our code to depend
on this library or if we want to replace it with something we write ourselves.

The protocol buffers library has great support for specifying nested struc-
tured data in a type safe way. Protocol buffers have other interesting properties
that make them very usefull for storing xml configurations.

simple specification

wrapper generation:

structure versioning:

efficient serialization:

reflection:

4.1

: A small but powerful specification language has been defined that allows
specifcation of nested structures efficiently. Every field in a structure has
a unique numerical tag that identifies that field. Fields can be required,
optional or repeated and defaults for fields can be specified.

Specifications are transformed into C++ wrapper classes allowing type
safe access.

By following some rules the protocol buffers support modifications to the
structure including deprecation of fields and introduction of new fields.

By using defaults value and optional fields the serialized protocol buffer
can be very small. Also because it is a binary format reading a protocol
buffer back is very fast.

Protocol buffers can be generated with reflection. This will allows C++
code to reason investigate the fields in the strucures. This makes writing
generic code that transforms e.g. an XML file to protocol buffers very
easy.

kasp.proto

This file contains the specification of the C++ wrappers.

4.2

protoc

This is the protocol buffer compiler used to generate the C++ classes.

4.3

kasp.pb (C++)

This is the resulting C++ generated from the proto file specification.

4.4
The

protobuf

protocol buffer run-time implements the base functionality used by the

generated C++ code.

4.5

Serialized Protobuf

This is the binary representation of a protocol buffer. Every policy in the
configuration can be stored as a blob value in a database table. This ensures
that it will be present in a backup/copy of the database.

5 Implementation Notes

Protocol buffers are a good solution for representing the internal configuration
data of the enforcer. But because the number of actual data types being used is
limited and the nature of the data itself is not extremely complex, it is possible
to rewrite the wrappers in direct C++ code.

