
 

© 2009, A.E.T. Europe B.V., Arnhem, The Netherlands 

 

 

 

 

Audit OpenDNSSEC 

 

 

 

 

 

 

 
 

 

A.E.T. Europe B.V. 

IJsselburcht 3 

NL - 6825 BS Arnhem 

The Netherlands 



  
 

Warning Notice 

The information contained in this document is provided "AS IS" without any warranty of any kind. Unless otherwise expressly agreed in 
writing, A.E.T. Europe B.V. makes no warranty as to the value or accuracy of information contained herein. The document could include 
technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Furthermore, A.E.T. Europe 
B.V. reserves the right to make any change or improvement in the specifications data, information, and the like described herein, at any 
time. 

 

A.E.T. EUROPE B.V. HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE INFORMATION CONTAINED 
HEREIN, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-
INFRINGEMENT. IN NO EVENT SHALL A.E.T. EUROPE B.V. BE LIABLE, WHETHER IN CONTRACT, TORT OR OTHERWISE, FOR ANY 
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER INCLUDING BUT NOT LIMITED TO DAMAGES 
RESULTING FROM LOSS OF USE, DATA, PROFITS, REVENUES, OR CUSTOMERS, ARISING OUT OF OR IN CONNECTION WITH THE USE 
OR PERFORMANCE OF INFORMATION CONTAINED IN THIS DOCUMENT. 

 

All A.E.T. Europe B.V. product names are trademarks of A.E.T. Europe B.V. All other product and company names are trademarks or 
registered trademarks of their respective owners. 

 

 

 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

I 



  
 

Document Information 

Filename:   DOC20090514DNSSEC01.doc 

Edition 1.0 

 

Project Information:  

 

Document revision history 

Version Date Author Changes 

1.0 20090514 Jan Rochat Initial version 

    

 

 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

II 



  
 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

III 

Table of contents 

1 Introduction .........................................................................................................1 

2 Scope of the audit ................................................................................................1 

3 Findings................................................................................................................2 
3.1 The SoftHSM.................................................................................................................................... 2 
3.2 The PKCS#11 Handling in Signer tools ........................................................................................... 4 

4 Conclusions and possible next steps....................................................................5 

 



  
 

1 Introduction 

Using DNS “as-is” creates the problem that there is no way to check the integrity of the provided information. This may 
lead to miss-use and jeopardize the security of entire information systems. In order to circumvent this problem a new 
standard has been introduced to overcome this problem by digital signing the DNS information by the owner of the 
information. One of the implementations of this standard is implemented and maintained by the opensource project 
OpenDNSSEC (www.opendnssec.se). One of the steps necessary to see if the product can be used in real life situation is 
a code review. This document describes the outcome of the security audit conducted by A.E.T. Europe B.V. (AET) on the 
security related parts of the project. 

2 Scope of the audit 

This audit concentrated on the source code and only the parts contained in the folders softHSM and signer/tools. 

 

The audit tries to answer the question if the project can be used in a real life situation. 

 

To answer this question the following aspects were addressed during the audit: 

 

 Are the cryptographic primitives applied in the correct way 

 Is the program constructed in such a way that it will work in different environments using a real crypto device. 

 

It was not checked if the provided code actually compiles and worked. 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

1 

http://www.opendnssec.se/


  
 

 

3 Findings 

3.1 The SoftHSM 

 

File : softHSM/src/bin/softhsm.cpp 

File version : /* $Id: softhsm.cpp 609 2009-05-05 11:44:51Z rb $ */ 

Line 168: soPIN = getpassphrase("Enter SO PIN (4-255 chars): "); 

 

The SoftHSM is using a PIN length of minimal 4 characters, pleas consider using a bigger length e.g. when using a smart 
card (which has the possibility for a retry counter) the international accepted minimal length is 6 characters. 

 

File : softHSM/src/bin/softhsm.cpp 

File version : /* $Id: softhsm.cpp 609 2009-05-05 11:44:51Z rb $ */ 

Line 363: // We do not use any salt 

     Pipe *digestPIN = new Pipe(new Hash_Filter(new SHA_256), … 

 

Hashing a PIN without SALT makes the hashed PIN vulnerable for dictionary attacks. 

 

File : softHSM/src/lib/main.cpp 

File version : /* $Id: main.cpp 548 2009-04-29 13:11:04Z rb $ */ 

Line 441:    *pulCount = 14; 

 

Do not use static values if not really needed, in this case the number 14 (which is the number of supported algorithms 
mentioned several times).  

 

If you have to change the code in the future it is very well possible that one forget to update a value. 

Consider using a dynamic lookup (for example by using a sizeof()) or if this is not possible by using a define. 

 

File : softHSM/src/lib/main.cpp 

File version : /* $Id: main.cpp 548 2009-04-29 13:11:04Z rb $ */ 

Line 458 :   pMechanismList[2] = CKM_MD5; 

 

The use of MD5 for this use case can no longer be regarded as secure; consider using SHA256 or better. 

 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

2 



  
 

File : softHSM/src/lib/main.cpp 

File version : /* $Id: main.cpp 548 2009-04-29 13:11:04Z rb $ */ 

Line 492 :      pInfo->ulMinKeySize = 512; 

 

When building a PKCS#11 implementation on top of another crypto library this information should be retrieved from the 
underlying abstraction. 

3.1.1 General remarks on SoftHSM 
The PIN is stored in the database as a hash value. Consider using the PIN as a shared secret e.g. use the value of the 
PIN to derive a symmetric encryption key (e.g. as described in PKCS#5). This symmetric key should then be used to 
encrypt a session key which is being used to encrypt the private objects. At this moment having access to the database 
is enough to get access to the private key. 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

3 



  
 

 

3.2 The PKCS#11 Handling in Signer tools 

File : signer/tools/ldns_pkcs11.c 

File version :  * $Id: ldns_pkcs11.c 608 2009-05-05 10:54:07Z jelte $ 

Line 717 : 

 /* TODO: depends on type and key, or just leave it at current 

  * maximum? */ 

 CK_ULONG signatureLen = 128; 

 

The comment says it all; this should be a dynamic process that uses the key and the chosen algorithm to calculate the 
size of the expected output. Consider using a RSA private key having a length of at least 2048 bit.  

 

File : signer/tools/ldns_pkcs11.c 

File version : * $Id: ldns_pkcs11.c 608 2009-05-05 10:54:07Z jelte $ 

Line 745 :digest_mechanism.mechanism = CKM_MD5; 

 

The use of MD5 for this use case can no longer be regarded as secure; consider using SHA256 or better. 

 

3.2.1 General remarks on the PKCS#11 Signer tool 
 

In the current implementation the PKCS#11 library provided by the HSM is used as a generic cryptographic library. 
PKCS#11 is not meant as a generic cryptographic library but as a token abstraction. Which in practice means that there 
are several types of PKCS#11 implementations. To make sure that more then one type (or even brand) of HSM can be 
used with the Signer tool you need an abstraction that compensates when a specific cryptographic function is not 
provided by the PKCS#11 implementation of the HSM used to secure the private key.  

 

If you have a HSM that only supports signing a DigestInfo but doesn’t support Digesting, you need an additional 
Cryptographic device or library to do the digesting.  

 

What applies for cryptographic features also applies for other properties like the need to Logon. Before providing a PIN 
one should check if this is really needed or not. It may well be that the used HSM has its own KeyBoard and Display and 
that you need to type in the PIN on this dedicated Keyboard.  Another example: It might be that the application using 
the HSM has to provide the PIN every time it wants to sign something and that the authentication is dropped after 
signing.  

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

4 



  
 

© 2009 A.E.T. Europe B.V.  Edition 1.0  
Doc ID: DOC20090514DNSSEC01.doc 

5 

 

4 Conclusions and possible next steps 

The examined implementation is a good starting point towards an implementation of DNSSEC. However to use it in a 
real life environment at least the following points have to be addressed: 

 Tighten the security of the SoftHSM 

 Make sure that you use state of the art algorithms  

 Apply the algorithms in the correct way 

 Add another abstraction that handles different types of HSMs 

 


	1 Introduction
	2 Scope of the audit
	3 Findings
	3.1 The SoftHSM
	3.1.1 General remarks on SoftHSM

	3.2 The PKCS#11 Handling in Signer tools
	3.2.1 General remarks on the PKCS#11 Signer tool


	4 Conclusions and possible next steps

