
Testing an HSM for OpenDNSSEC

As far as OpenDNSSEC is concerned, any PKCS #11 implementation can be used as
its underlying HSM. This means that an important part of HSM testing is PKCS #11
testing. However, as the SoftHSM is a separate deliverable that happens to emanate
from the OpenDNSSEC project, we do include a few specific tests for the SoftHSM.

HSM and SoftHSM

Existing test suites

One test suite is available on http://www.mozilla.org/projects/security/pki/pkcs11/netscape/
and is described as follows: The Netscape PKCS #11 Test Suites are designed to help ven-
dors of PKCS #11-compliant cryptographic hardware verify compatibility with Netscape
software.

The HSM must pass this test.

Requirements

General remarks

All tests that follow should be run with tests for memory leaks, and the free memory
available inside the SoftHSM should be returned to the same amount as before the test.

Preferrably, these tests should not cause fragmentation. If fragmentation does occur,
the test should be repeated until no more fragmentation occurs. This should happen
within three test runs.

All tests assume an initialised token. If information is required to be present on the
token, it will be created and destroyed as part of the test.

The distinction between dynamic and static linking of a library is not taken into
account in what follows; this is because it is not practical to unload and later reload a
library.

Initiation sequence

The PKCS #11 setup sequence comprises of a number of steps. The HSM should support
any partial setup with the mirrorring breakdown:

• FS find an available slot to access

• S+ open a session with that slot

• A+ login to access the token in the slot (variations: RO User, RW User, RW
SO)

1

http://www.mozilla.org/projects/security/pki/pkcs11/netscape/


• TS attempt operations for each of the login variations, and check if their success
or failure match the specifications for the login variations

• A- logout from the token

• S- close the session with that slot

Sequences to test include:

1. FS S+ A+(ROUSER) TS A- S-

2. FS S+ A+(RWUSER) TS A- S-

3. FS S+ A+(RWSO) TS A- S-

Also, arbitrary steps marked with a + in these sequences should at random, but
occassionally (say, 10% chance for each step, so the chance of a proper sequence is over
70%) be skipped. If a + step is skipped it must cause errors in the following steps, at
least in the TS steps and the - matching the missing + step.

If handles are needed but not available from previous in-sequence function calls, use
values from earlier attempts, or 0 if none were available. Only those inherited from an
earlier FS in a sequence without it may lead to successes. Note that this implies that
unstructured sequences are tried, like:

• FS A+(RWSO) TS A- S-

Numerous of these sequences should be run in random order (say, 100 in a sequence)
and the last one broken off halfway. This should leave the token in a well-defined and
as-expected state. If an object was being created during the break-off, then either it
must be present in its entirety or it should not be present at all -- the basic property of
atomicity.

Memory fragmentation test

OpenDNSSEC will create and destroy large numbers of keys. This behaviour must not
lead to clogged up HSMs.

1. Create as many keys, in various sizes, as will fit onto the token. If a key
cannot be created it should fail due to memory limits, and smaller key sizes
can be tried to fill up the space until no more will fit into the HSM.

2. Pick a key at random, remove it, and create a new one of the same size. This
test must not fail, as this would indicate memory fragmentation.

3. Repeat the previous step; it should run thousands (say, 2500) of times.

4. Destroy all keys.

It is possible to extend this into a linearity test of the memory space:

2



• Perform the test above multiple (say, 10) times and each time create the same
key sizes as in step 1, but in a different order. After having created all the keys
that were successful in step 1, try once more with all the key sizes that failed and
thereby ended step 1. Repeat the rest of the procedure as stated above, possibly
with less repeats of step 2 (say, 250 times) and expect the same results.

Throughout this process, any monitoring of memory performance in the HSM is wel-
come. Minimally, a memory leak test should be performed to ensure that the consumption
of memory in the implementation of the HSM’s memory space does not leak. Any tests
that monitor fragmentation may be of use to see if the HSM would start to underperform
at some point.

Key creation test

This test ensures that RSA keys of the required sizes are available.

1. Start off with the set of key sizes that are demanded by OpenDNSSEC

2. Inquire what other sizes are supported by the HSM. If ranges are supported,
add every occurring size but keep in mind that an RSA modulus always has
a length which is a multiple of 8.

3. Create an RSA key pair with that length.

4. Export the key’s modulus.

5. Ensure that the length matches the specifications.

6. Destroy the key pair.

7. Iterate from 3 until all key sizes have been tested.

Signing test

1. Create an RSA key pair of a size demanded by OpenDNSSEC (pick at ran-
dom)

2. Create a lot of signatures with it, signing random data (say, 100 signatures)

3. Verify each of these signatures against the public key

4. Destroy the RSA key pair

5. Repeat from step 1 for a couple of times (say, 10)

Reliable state recovery test

Any HSM must be a solid, reliable tool. It should be able to withstand sudden disruptions
in the supplied power, and come back up gracefully. In all cases, the data that has been
confirmed to exist must persist after any form of crash. Also, crashes may not lead to
the unavailability of an HSM resource.

3



HSM Toolkit

The code for the HSM Toolkit is currently subjected to major work. We have not es-
tablished a test plan for them. In general, the HSM Toolkit may help to perform the
foregoing tests, but it may make sense to test it on its own.

To be able to perform any tests, documentation with the intended use of the software
will be required.

4


	HSM and SoftHSM
	Existing test suites
	Requirements
	General remarks
	Initiation sequence
	Memory fragmentation test
	Key creation test
	Signing test
	Reliable state recovery test


	HSM Toolkit

