
Introduction

This document describes the project plan for OpenDNSSEC. The OpenDNSSEC
Daemon (ODD) will be a daemon, responsible for enabling and managing DNSSEC
in an existing DNS infrastructure. The target audience for ODD is reflected in its
default settings. The mission is that this software can seamlessly integrate into an
existing deployment scenario, without the necessity to overhaul the entire existing
infrastructure, or to be closely acquainted with the DNSSEC protocol. The different
possible configurable settings reflect a wide variety of possible deployment scenarios.

Two phased approach

The first phase will deliver a proof of concept. This will be various pieces of software
(coded and scripted) bundled together to perform the desired tasks. It will only
contain bare operating minimals. The second phase will deliver a production version.
It is somewhat richer in features, but its performance will be better and much more
stable.

Secure key storage

Securely storing a DNSKEY is a requirement for ODD. The most secure way to store
a key is to use a Hardware Security Module (HSM). HSMs can use a wide variety of
API's, though the most supported API is PKCS11. The ODD will use PKCS11 to
outsource public key related, cryptographic functions. To be able to support an
environment without the need for an HSM, ODD will be shipped with a virtual HSM
that implements the PKCS11 standard.

Continuous signing

Continuous signing is a requirement because of zones that are so frequently updated,
that the time between updates is smaller than the time to re-sign the zone.

Support multiple zones

The ODD needs to be able to massively scale. It should not only support a large
amount of zones, it should also support a large number of DNSKEYs. This is to
satisfy the need for large hosting outfits like ISPs. Note that in order to support a large
number of zones, each zone might have its own, distinct set of secondaries.

Key and Signing Policy Enforcer

The Key and Signing Policy (KASP) Enforcer is a stateful engine which instructs
(either active or passive) the signer which keys to use, revoke, schedule, etc at what
time.

Protocol Compliance

The ODD will comply to RFC4033/4/5 and 5155 for DNSSEC. Furthermore, ODD
will understand notify, axfr and ixfr. The ability to respond to general queries is an
explicit non-requirement.

Security

Next to the DNSSEC protocol extensions, ODD will be able to handle TSIG and ACL
based controls.

A-synchronicity.

The ODD will be able to handle incoming zonetransfers, or dynamic updates
independent of outgoing transfers. In general, incremental changes to an unsigned
zone leads to larger incremental changes to signed zones. In order to better manage
the outgoing stream of updates, either allow a more flattened stream of updates, or a
sporadic burst of bulk transfers, the ODD will have a fine tuned outgoing transfer
mechanism independent of incoming transfers. Incoming transfers will be handled as
they come in.

Architecture

Introduction

The architecture of ODD consists of several modules, working together as one. The
core of the ODD is the signer engine, which interacts with several modules and
internal databases.

The Signer Engine

The internal signer engine is the heart of the ODD. It receives changes to unsigned
zones, after which it interacts with the NSEC-ifier to maintain the circular NSEC or
NSEC3 record list. New records are given to the RRset Signer. The signed zone is
then updated with removed and new records. The Signer Engine is controlled by
KASP, which keeps tracks of the various keys and their states.
The main task of the engine is to make sure that signatures never expires and to resign
the zone when a new key is used, and to manage the soa serial update.

The NSEC-ifier

The NSEC-ifier keeps an nsec or nsec3 chain fully linked. Whenever there is a change
(either adding or removing records) in the zone data, the NSEC-ifier is called to
update the linked list. Changed, added or removed NSEC(3) records then gets pushed
back into the signer engine.
The NSEC-ifier can also be instructed to create a new NSEC3 chain, when a new
hash algorithm, new iterations, or a new salt is used.

The RRset Signer

The RRset Signer takes an incoming RRset, prepares an RRsig record with the proper
rdata, and instructs the HSM to create the signature. This signature is then added to
the RRSIG rdata. The RRSIG is returned to the signer engine.

(quick notes)
updates the signed zones database.
The signer engine informs the NSEC-ifier that the NSEC(3) chain is altered.
The NSEC-ifier requests the signer engine to change (add/remove) and sign the
NSEC(3) records.
The signer engine streams the signature candidates to the RRset signer.
The signer engine updates the signed zone database.

Inbound adapter

The ODD has an inbound adapter which can receive changes to zones using AXFR,
IXFR, DDNS, or re-reading a zonefile from disk. This adapter will feed the internal
system with changes to existing zones.

Outbound adapter

The ODD has an outbound adapter which can emit changes to zones using AXFR,
IXFR, or writing a zonefile to disk. This adapter will feed the external system with
changes to existing zones.

